ΤΟΡΙΟ	Y	NY		
ISOLATING VARIARI ES				
ISOLATING VARIABLES				
• How to ISOLATE a VARIABLE (get the 'x' or the 'y' by itself)				
BUILDING RULES FOR LINEAR FUNCTIONS				
• How to identify INDEPENDENT and DEPENDENT variables in a WORD PROBLEM	I			
• How to express an equation in ' Y = AX + B ' form starting from a WORD PROBLE	Л			
• Given two sets of coordinates (x_1,y_1) and (x_2,y_2)				
\circ Given a rate (a) and an initial value (b)				
 Given a rate (a) and a set of coordinates (x,y) 				
• Given 3 different pieces of information (ex. 3 cats + 2 dogs = 50\$)				
• How to identify the INITIAL VALUE ('b') on a GRAPH (Y-intercept)				
• How to identify an X-INTERCEPT on a graph (and add the '0' to the y coordinate)				
• How to find the SLOPE of a line $(a = \frac{y_2 - y_1}{x_2 - x_1})$				
• How to find the EQUATION of a line given the SLOPE and a POINT on the line				
• How to find the EQUATION of a line given TWO POINTS on the line				
How to find an X-INTERCEPT , given an EQUATION				
How to find a Y-INTERCEPT , given an EQUATION .				
PARALLEL AND PERPENDICULAR LINES				
How to find the EQUATION of a line PARALLEL to a given line				
 Same slope ('b' can be the same or different) 				
• How to find the EQUATION of a line PERPENDICULAR to a given line				
\circ The slope of one line is the N.R.S. of the other line				
SYSTEMS OF EQUATIONS				
• How to TRANSLATE a STORY into a SYSTEM OF EQUATIONS (make the				
equations)				
• How to determine the NUMBER OF SOLUTIONS in a SYSTEM				
• (parallel (0), different slopes (1), parallel and coincident (same line, ∞)				
• How to SOLVE a SYSTEM OF EQUATIONS (find both 'x' and 'y')				

FUNCTIONS

- **ZERO** degree (constant) e.g. '*y* =0*x* + 5 ' or just y = 5
- **FIRST** degree (direct, and partial with positive and negative slopes) *y* = *ax* + *b*
- **2**nd DEGREE (quadratic) function ' $y = ax^2$ '
 - Working backward to find 'a,' given x and y (plug it in to find 'a')
 - Working backward to find 'x,' given a and y
- **EXPONENTIAL FUNCTIONS** (growth and decay) $y = a^x$
 - Increasing percentages c = (1 + %)
 - Decreasing percentages c = (1 %)
 - Working backward to find 'a' by plugging in the numbers and isolating 'a'
 - Working backward to find 'x' with a table of values
- **STEP FUNCTIONS** (open circle pass through, closed circle use the value)
 - Applying step functions to word problems
 - Correctly interpreting a step-function graph
- **PERIODIC** function (find the and identify how much time is left)
 - identifying the period of a repeating pattern function (time for a full cycle)
 (period → full time → # full cycles → time full cycles → time left → read it off)
 Building a rule from points when 'time left' is not obvious from the graph
 - **PIECEWISE** FUNCTIONS (different functions at different points along the domain)
 - Using points on a graph to finish incomplete equations
 - Working backward to find the 'x' values, given a particular 'y'

STATISTICS

•	How to make and read a STEM AND LEAF PLOT	
•	How to calculate MEAN , MEDIAN, and MODE	
•	How to calculate MEAN DEVIATION (no negatives!)	
•	How to calculate PERCENTILE RANK (always round up)	
•	How to find a SCORE of place GIVEN PERCENTILE (round down, then find the	
	score)	