Writing rules from word problems.

Given a word problem, youlll be Asked to turn the situation into a rule.

Ex: You GET a babysitting job where You are paid $5 \$$ Just To Show UP AND $10^{\$}$ for EACH ADPITIONAL HOUR.

STEP (1) IDENTIFY THE VALUES THAT ARE CHANGING in THE PROBLEM.
\rightarrow BE SPECIFIC

Ex: You GET A BABYSITTING JOB WHERE You are paid $5 \$$ JUST TO SHOW UP AND IO fOR EACH ADPITIONAL HOUR.

VALUES \rightarrow MONEY EARNED $(\$)$
\rightarrow TIME (HOURS)
(2) DECIDE Which Value depends ON THE OMER TO CHANGE.

VALUES \rightarrow \$ EARNED

$$
\rightarrow \text { TIME }
$$

does \$ make time chance?
does time make \$ change?
$\$$ CHANGING DEPENDS ON TIME CHANGING.
the $\$$ is called The time is called
THE DEP. VARIABLE
INDEPENDENT.
gets a Y gets an
(3) Identify the rate of change $\left(\begin{array}{cc}+ \text { if } \rho \\ - \text { if } & \nu\end{array}\right)$
\& make it simple as possible.

Ex: You GET A babysitting job where you are paid 5 \$ Just to show up AND $10^{\$}$ for EACH ADDITIONAL HOUR.

THE Rate of change is $+10^{\$}$ per 1 hour.
(4) Identify the initial (starting) value.

Ex: You GET A BAbysitting Job where You are paid $5 \$$ JUST TO SHOW UP AND $10^{\$}$ for EACH ADPITIONAL HOUR. Initial value $=5$ \$
(5) write the rule in the form

$$
\begin{aligned}
& y=a \cdot x+b \\
& \underset{\text { VAR }}{\operatorname{DEP}}=\text { R.O.C. } \cdot \underset{\text { VAR }}{\text { IND }}+\underset{\text { VAlUE. }}{\operatorname{initial}} \\
& \text { \$EARNED }=10 \frac{\$}{h r} \text {. Hours }+5 \$ \\
& y=10 \cdot x+5
\end{aligned}
$$

EX: YOUR PHONE CAN BE CHARGED 1000 TIMES And you chare it 2 times a day. How many charges are left?

- Values:
- R.O.C
- Initial value
- Rule:

Ex: YOUR PHONE CAN BE CHARGED 1000 TIMES AND YOU CHARGE IT 2 TIMES A DAY.
How many Charges are left?

- VALUES: CHARGES (EFT \rightarrow DEP. (Y) TIME (DAYS) \rightarrow IND. (X)
- R.O.C -2 charges per day (going \downarrow)
- Initial value: 1000 times
- Rule:

$$
\begin{aligned}
\begin{array}{l}
\text { CHARGES }
\end{array} & =-2 \underset{\text { CHARGES }}{\text { LEFT }}(\text { DAYS })+1000 \\
y & =-2(x)+1000
\end{aligned}
$$

