Division in ALGEBRA

1) Represent the division As A Fraction.
2) WRITE OUT THE FUCL EXPRESSION ON THE TOP \& BOTTOM.
3) CANCEL OUT \& WRITE WHAT IS LEFT USING EXPONENTS.
(1) $4 x^{2} \div 2 x$

$$
\frac{4 x^{2}}{2 x}=\frac{(2 x \cdot x \cdot(x)}{12 \cdot x}=2 x^{\prime}
$$

(2)

$$
\begin{aligned}
& 8 x^{4} \div 16 x^{5} \\
& \frac{8 x^{4}}{16 x^{5}}=\frac{8 x * * *}{16 * * * * x}=\frac{0.5}{x}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 10 x^{2} \div 2 x^{5} \\
& \frac{10 x^{2}}{2 x^{5}}=\frac{518 x *}{12 x * x x x}=\frac{5}{x \cdot x \cdot x}=\frac{5}{x^{3}}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& 10 x^{2} y^{3} \div 5 x y \\
& \frac{10 x^{2} y^{3}}{5 x y}=\frac{21 \phi x(x) y(y)}{15 x y}=2 x^{1} y^{2}
\end{aligned}
$$

The negative Exponent:
$X^{-2} \rightarrow$ WHEN AN EXPONENT is NEGATIVE, EvERYTHING STAYS THE SAME, EXCEPT THE Variable flips From the

- TOP \rightarrow BOTTOM
- BOTTOM \rightarrow TOP
(1) $\frac{2 x^{-4}}{1} \Rightarrow \frac{2}{1 x^{4}} \quad($ from \rightarrow bottom)
(2) $\frac{10}{1 x^{-3}} \Rightarrow \frac{10 x^{3}}{1} \quad \begin{aligned} & \text { (from } \\ & \text { bottom } \rightarrow t o p)\end{aligned}$

Dividing G By ():
just like multiplication, if you are Dividing A () By SOMETHING,
everything in the () Gets a turn.

$$
\begin{aligned}
& \left(15 x^{2}-10 x\right) \div 5 x \\
& =\frac{\left(15 x^{2}-10 x\right)}{5 x}= \\
& =\frac{15 x^{2}}{5 x}-\frac{10 x}{5 x} \\
&
\end{aligned}=3 x-2
$$

